
BAXI.Net Programmers Guide

Page 1

Document Description

Baxi.net

Application Developers Guide

Version: 1.8.0.737

Date: 25.06.2018

BAXI.Net Programmers Guide

Page 2

CONTENTS

Baxi.net
Application Developers Guide

Version: 1.8.0.737
Date: 25.06.2018

1 References
2 Revision Record
3 Introduction and environments

Supported Frameworks on Windows:
Recommended Windows OS versions:
Supported Windows OS versions

4 Procedures for using Baxi
4.1 General

4.1.1 Major states - Bank mode and Local mode
4.1.2 Using the interface

4.2 Installation
4.3 General work flow
4.4 Error situations
4.5 USB and Virtual COM port (RS-232) support
4.6 Bluetooth support
4.7 Multi-instance support

5 BAXI Properties
5.1 Read properties
5.2 Write properties

6 BAXI Methods
6.1 General note on parameters.
6.2 Open
6.3 Close
6.4 TransferAmount

6.4.1 TransferAmont OptionalData Json fields
6.4.1.1 autodcc
6.4.1.2 merch
6.4.1.3 txnref

6.4.2 Usage of Pre-Authorisation in TransferAmount
6.4.3 Usage of PIN Bypass in TransferAmount

6.5 Administration
6.5.1 Administration OptionalData Json fields

6.5.1.1 merch
6.5.1.2 txnref

6.6 TransferCardData
6.7 SendTLD
6.8 GetTLDTag
6.9 SendJson
6.10 BiBAdministration
6.11 BiBTransaction
6.12 GetFirstPairedCompanionAddress
6.13 ActivateCompanion

7. BAXI Events
7.1 General note on events
7.2 OnDisplayText
7.3 OnPrinterText
7.4 OnLocalMode
7.5 OnError
7.6 OnTLDReceived
7.7 OnJsonReceived
7.8 OnStdRsp
7.9 OnTerminalReady
7.10 OnLastFinancialResult
7.11 OnBarcodeReader

8 Baxi.ini file
9 Common Use Cases

9.1 Transactions
9.1.1 Purchase
9.1.2 Return of goods
9.1.3 Reversal
9.1.4 Purchase with Cashback
9.1.5 Balance inquiry
9.1.6 Deposit
9.1.7 Cash withdrawal
9.1.8 Force Offline
9.1.9 Pre-Authorisation

9.2 TopUp
9.3 Gift Card

BAXI.Net Programmers Guide

Page 3

9.4 Group ID
9.5 Get encrypted card data
9.6 Get encrypted card data and issuer ID
9.7 Send a track 2 card swipe to the terminal:
9.8 TIP
9.9 Check host connection
9.10 Set terminal language
9.11 Receive a card inserted status event
9.12 "Get Customer Info"
9.13 "Get Customer Info" with Admin Finish.
9.14 Investigating results of last financial transaction.
9.15 JSON replacing TLD.

9.15.1 CardInfo RequestAllTags(3999) using sendJson
9.15.2 sendTld
9.15.3 sendJson

9.16 JSON and Multiterminal
9.17 JSON and VAS (Value Added Services)
9.18 JSON and Terminal as an ECR Printer
9.19 Split Acquiring

10 MultiCurrency functionality
10.1 Introduction & Setup
10.2 Testing multicurrency

11 Best practice implementation of security in the ECR interface.
12 Deprecated Functions
13 Removed Functions

13.1 TransferAmount_V2
13.2 TransferAmount_V3
13.3 TransferAmount_V4
13.4 Administration(int admCode, string OperId)
13.5 SendTLD(string typeString, byte[] tldField)
13.6 TransferCardData(int trackType, string trackData)
13.7 BiBAdministration(int AdmCode, string OperID)
13.8 BiBTransaction(int amount, string transactionData)

14 Appendices
14.1 Appendix A – Status codes

14.1.1 Error codes
14.1.2 Method reject codes

14.2 Appendix B – Sequence diagrams
14.2.1 Initialisation
14.2.2 Successful purchase
14.2.3 Unsuccessful purchase
14.2.4 Purchase with an error situation

14.3 Appendix C – ECR Print Request\Response

BAXI.Net Programmers Guide

Page 4

1 References

Reference 1: Nets proprietary TLD (TypeLengthData) format description
Reference 2: ECR Chapter 13 Appendix D - SendJson

BAXI.Net Programmers Guide

Page 5

2 Revision Record

DATE VER. COMMENTS Author

22.12.2010 1.0.0.16 Version step only.

14.01.2011 1.0.0.17 Version increment only.

19.01.2011 1.0.2.0 Version increment only. See
release notes for more details.

23.02.2011 1.0.2.1 Added error code 7104.

24.02.2011 1.0.2.2 Version increment only. See
release notes for more details.

08.03.2011 1.0.2.3 USB monitoring/support, added
chapter 4.4

09.03.2011 1.0.2.4 Version step only.

11.03.2011 1.0.2.5 Force Offline

16.03.2011 1.0.2.6 Version step only

21.03.2011 1.0.2.7 Version step only.

22.03.2011 1.0.2.8 Version step only.

01.04.2011 1.0.2.9 Version step. Added revision to
enable documentation changes
when BAXI version number
should not change.

12.04.2011 1.0.3.0 Version step only.

15.04.2011 1.03.1 Internal release only

19.04.2011 1.0.3.2 Version step only.

23.05.2011 1.2.0.3 New interface. This involves
refactoring existing
implementations. It is especially
important for COM clients to
rebuild their interface files.
Upgraded to support .net micro
framework version 4.1.

06.06.2011 1.2.0.5 Version step only.

23.06.2011 1.2.0.6 Added Extended LcalMode
Documenation:
TotalAmount,
RejectionSource,
RejectionReason,
TipAmount,
SurchargeAmount,
TerminalID,
AcquirerMerchantID,
CardIssuerName,
ResponseCode,
TCC,
AID,
TVR,
TSI,
ATC,
AED,
IAC

18.07.2011 1.2.0.7 Added rejection error codes for
new properties:
UseDisplayTextID
UseExtendedLocalMode

11.08.2011 1.2.0.7-B Added Aministration Finish.

06.09.2011 1.2.0.8 Version step only.

BAXI.Net Programmers Guide

Page 6

16.09.2011 1.2.0.9 Added new property
SerialDriver. See properties
chapter for more detail.

03.10.2011 1.2.1.0 Version step only.

17.10.2011 1.2.1.1 Version step only.

21.10.2011 1.2.1.1-B Added property DeviceString to
document.

02.12.2011 1.3.0.1 Added new admin messages for
last transction receipt and
result, as well as the last
transaction result message.

24.01.2012 1.3.0.2 Added new TLD
fields:TCC,BankAgent
Added new fields in extended
Local Mode:
AccountType,EncryptedPAN,
BankAgent,
organisationNumber.

16.02.2012 1.3.0.3 Added DoNotSplitDisplayText in
ini file.

17.02.2012 1.3.0.4 Renamed
DoNotSplitDisplayText
UseSplitDisplayText

22.03.2012 1.3.0.5 Renamed UseSplitDisplayText
UseJoinDisplayText

24.09.2012 1.3.0.6 Added property
TerminalSwVersion.

15.10.2012 1.3.0.7 Version increment only.

18.12.2012 1.3.0.7-C Added Admin codes for Dataset
and Software download.

14.01.2012 1.3.0.8-A Version increment only.

26.04.2013 1.3.0.9 Version increment only.

15.05.2013 1.3.1.0 Version increment and update
of event handling.

Remark! The event is fired from
an internal thread in baxi. The
ECR client code is therefore
executed from the baxi thread.

It is important to release the
event handler as fast as
possible to let the thread go
back and wait for more events.

We recommend that the ECR
programmer just create a new
event and send the information
to an internal thread of the ECR
app.

24.05.2013 1.3.1.1 Version increment.

Added OptionalData in Transfer
Amount and LocalMode.

17.06.2013 1.3.1.2 Version increment.
Added PreAuth
Changed OptionalData in
Transfer Amount and
LocalMode.

02.07.2013 1.3.1.3 Version increment.
Added new error codes 7515
and 7516

01.08.2013 1.3.1.4 Version increment.

13.08.2013 1.3.1.5 Version increment.
Added new error codes 7427

23.08.2013 1.3.1.6 Version increment.

BAXI.Net Programmers Guide

Page 7

04.09.2013 1.3.1.7 Version increment.

21.10.2013 1.3.1.8 Added missing documentation
in section 4.6 Write properties:

UseSplitDisplayText

LogAutoDeleteDays

SocketListener

SocketListenerPort

Use2KBuffer
DisplayTextInLocalMode

05.11.2013 1.3.1.9 A Version increment.

27.11.2013 1.3.1.9 B Added JSON documentation

16.01.2014 1.3.2.0 Version increment.

24.02.2014 1.3.2.1 Added new error codes 2012

23.04.2014 1.3.2.1 C Added Autodcc documentation

22.05.2014 1.3.2.1 D Added Multiuser merch
documentation

10.06.2014 1.3.2.2 Version increment.

10.07.2014 1.3.2.3 Version increment.

23.07.2014 1.3.2.4 Version increment and added
new
error code 7016

09.10.2014 1.3.2.5 Added new write property
ClientID
Added documentation on how
to setup multiple instances of
baxi

02.12.2014 1.3.2.6 Bugfixes
Added new Method reject codes
7601, 7602 and 7603
Added new write properties
UseMultiInstance and
MultiInstanceConfigFile

19.01.2015 1.3.2.7 Bugfixes
Implemented Multiuser JSON
support and added
documentation for the same.
Added correct JSON examples
to the testgui.

21.05.2015 1.3.2.9 Added new API functions
GetFirstPairedCompanionAddre
ss and ActivateCompanion.

27.10.2015 1.3.2.10 Renamed
DoNotSplitDisplayText to
UseSplitDisplayText in
"Method reject codes"
documentation.
Changed the description for
"TraceLevel" in section "BAXI
Properties".
Changed Bluetooth support
section.

13.11.2015 1.3.2.11 Changed Bluetooth support
section.

12.01.2016 1.4.0.4 Added transactiontype Bonus

30.03.2016 1.4.2.0 Added Terminal as an ECR
Printer.
Added Appendix C: ECR
Print Request\Response in
documentation.
Added multicurrency
functionality

BAXI.Net Programmers Guide

Page 8

11.05.2016 1.4.2.0 Corrected outdated info about
supported environments and a
few other minor updates

AKa

23.05.2016 1.4.2.1 .net Framework 4.0 is also
supported.

AKa

03.02.2017 1.5.0.0 Pin By Pass MAh

03.05.2017 1.6.1.0 Import NewtonSoft library to
Baxi.NET

MAh

12.09.2017 1.7.0.631 Mono support for Baxi.NET MAh

10.10.2017 1.7.x Added notes for Virtual COM
ports. Move Bluetooth chapter.
Updated references.

AKa

08.02.2018 1.7.2.0 Added onBarcodeReader
section.

DNe

23.3.2018 1.7.x Terminal Rebooted (7016) error
message

KKi

9.5.2018 1.8.0.737 StoreBox implementation for
Baxi.NET

RSz

BAXI.Net Programmers Guide

Page 9

3 Introduction and environments

Baxi library is to simplify the integration of EFTPOS solutions to Windows-based point of sale (POS/ECR) applications. Baxi is a .NET library
(DLL) and can be used with tools having support for .NET framework.

Supported Frameworks on Windows:

.NET 3.5

.NET 4.0

.NET 4.5
Mono

Note! Library has been tested with Mono framework and supported also in Linux enviroment with limitations (only
Ethernet/TCP connection).

Recommended Windows OS versions:

Windows7
Windows10

Supported Windows OS versions

Windows7
Windows8/8.1
Windows10

BAXI.Net Programmers Guide

Page 10

1.
2.
3.
4.

4 Procedures for using Baxi

4.1 General

4.1.1 Major states - Bank mode and Local mode

Baxi has two major states to identify the transaction process - bank mode and local mode.

In a , the terminal is in control and processing transaction or another activityBank mode
In a , the ECR is in control and interface is waiting for a command. Indicates also that the transaction has ended in theLocal mode
terminal

Local mode response contains the result of the action

Any method that puts the terminal in bank mode will always result in a local mode event. The local mode event usually indicates the final
result of the operation.

4.1.2 Using the interface

Baxi has four types of communication channels:

Methods that can be called from the application to typically start a transaction
Events that are initiated by the terminal or Baxi
Properties containing information that can be read or written via Baxi interface
Ini file for initial configuration parameters

It is important to setup the following write properties to unique values to avoid using the same external resources.

Baxi.ClientID
Baxi.LogFilePrefix
Baxi.ComPort
Baxi.SocketListener
Baxi.SocketListenerPort

Baxi.net can be used with multiple instances of Baxi in the same process space.

4.2 Installation

Installation package for the Baxi.net does not include installer and therefore installation is done manually. Baxi_dotnet.dll,
Baxi.NewtonSoft.Json.dll and BaxiEcrGui.dll files should be placed in the same directory as the application executable and Baxi_dotnet.dll
linked to the application. Nets do not install these libraries to Global Asssembly Cache.

4.3 General work flow

Call a BAXI method.
Wait for incoming events from BAXI.
When an event gets triggered, act on the parameters of the event function.
The event signals a finished transaction.OnLocalMode

4.4 Error situations

An error event normally occurs if a selected function cannot be performed. When BAXI has lost communication with the terminal during a
transaction, the event will be triggered, with the local mode result set to an unknown status. The status of the transaction mustOnLocalMode
be investigated! This can either be done manually, or new in version 1.3.0.1, via the ECR admin messages "Get Latest Financial Transaction
Result" and "Get Latest Transaction Receipt".

4.5 USB and Virtual COM port (RS-232) support

BAXI.net supports monitoring of Virtual USB COM ports. This enables to detect USB connected payment terminal reboots and still
maintaining connection with BAXI. USB rs232 support is always enabled, but its behaviour is controlled by the ComPort and DeviceString
properties.

Note! This applies only when Telium USB driver is used! Current Jungo or Philog driver cannot use these parameters!

BAXI.Net Programmers Guide

Page 11

1.

2.

3.

NOTE!:
The Microsoft serial port implementation in the .net framework has a serious flaw with regards to USB rs232 ports disappearing.
It is imperative that USB rs232 solutions use the Nets serial port driver.
See the "SerialDriver" property for more details.

ComPort:
If this property is set to 0, this means that only DeviceString is used to dynamically find and monitor a USB rs232 com port that
matches the DeviceString.
Multiple payment terminals on one machine is not supported.
If ComPort is set to a number and DeviceString has a value, BAXI will first try this com port number. If it fails to open this com port, it
will dynamically find any USB port based on the value in DeviceString.
If DeviceString is not set, it will only use and monitor the port set in ComPort.

DeviceString:
This property matches the device friendly name that is part of the COM port name in Windows' Device Manager. For example, for
the Ingenico Telium2 terminals, they are currently identified as DeviceString="SAGEM MONETEL USB Telium".
This device friendly name can also be found in the registry under the USB enumerations, found under
HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Enum/USB
Under this key, all vendors have their own vendor and product ID. For Example, the Ingenico Telium 2 terminals are
Vid_079b&Pid_0028.
All entries will be under here and contain the following:

Use Friendly Name or DeviceDesc as identifier in baxi.ini and do not include the (COMXX) part.

Below are the scenarios for USB support in baxi.ini described in detail.

ComPort set to X, DeviceString not set: BAXI will attempt to open Com X.
If that fails, BAXI reports an error.
If it succeeds, BAXI will only monitor inserts and removals of Com port X only.

ComPort set to X, DeviceString set: BAXI will first attempt to open Com X.
If that fails, BAXI will dynamically try to find and open any com port that matches DeviceString.
BAXI will monitor all com ports that match DeviceString for inserts/removals.

ComPort set to 0, DeviceString set:In this case, BAXI will skip straight to trying to find a com port dynamically, based on
DeviceString.
BAXI will monitor all com ports that match DeviceString for inserts/removals.

Default is ComPort set to 0 and DeviceString set.

4.6 Bluetooth support

BAXI.net supports connecting bluetooth payment terminal - also called companion - directly. Companion needs to be paired with Windows
and settings BluetoothTunnel and SocketListener needs to be set to 1.

After companion is paired with Windows, it needs to be activated using ActivateCompanion function. Using this function requires
administrator rights. Activation needs to be done only once.

Bluetooth support requires three additional DLLs: PclUtilities.dll, PCLService.dll and dllsign.dll.

There are three different sets of these DLLs.

Windows 7/8 32 bit
Windows 7/8 64 bit
Windows XP 32 bit

Depending used Windows environment, corresponding DLLs should be copied to Baxi working folder.

Note! "Visual c++ 2012 redistributable x64" is required to be installed, to get the PCLutilities.dll working properly. (Or x86 if applicable)

Note! Windows firewall "inbound rule" is required to be setup as shown below.

BAXI.Net Programmers Guide

Page 12

Note : Make sure that program name will not contain any windows variable(i.e. Path has to be absolute path starting from drive
name).

BAXI.Net Programmers Guide

Page 13

Application is required to have the access to all TCP ports.

BAXI.Net Programmers Guide

Page 14

1.

2.

Allow it for all profiles.

4.7 Multi-instance support

BAXI.net supports running in a multi-instance environment.

This means that several BAXI instances can be run in parallel.

To be sure that everything is working correctly, the write property UseMultiInstance should be set to 1. Otherwise, 2 major errors can happen.

Logging could be haltered. Since if multi-instance environment is not turned on then logging could be done be several instances to
the same file. This could mean that all log lines are not written to the rightful files.
Several clients could have the same client ID, which could have very bad consequences.

If BAXI is run in a multi-instance environment and the UseMultiInstance setting is set to 1, then BAXI will add the Client ID to the name of the
log files, making them unique for that instance and therefore avoiding problem one.

Also, if this setting is set, then BAXI will also look for the setting MultiInstanceConfigFile, this setting will point out a file somewhere on the file
system that will be used by BAXI to coordinate all different instances of BAXI running on this machine.

Basically, each BAXI instance will write down its Client ID to this file and no one of them will allow an instance using a name that already
exists.

This path does not have to be pre-created, if it does not exist at open, BAXI will create it.

BAXI.Net Programmers Guide

Page 15

5 BAXI Properties

This list describes the properties that can be read /written in BAXI.

Write properties (I/O = W) must be written before the method Open() is called.

Any write property corresponding to a tag in the init file will override the init file tag value.

5.1 Read properties

These are available after a successful Open() dialogue.

Name Type I/O Description

Version string R This property is the BAXI version
number.
The format is a string of at least 35
in length containing a detailed
version string for the BAXI
component.

TerminalType
(old name Term_sw_version)

string R This property is:
First 2 bytes terminal type.
Second 2 bytes Sofie protocol
version.
It can be read after a successful
Open dialogue.

TerminalID string R This property is the terminal ID.
It can be read after a successful
Open dialogue.

TerminalSwVersion String R This is the Terminal software
version, corresponding to the
"ITU SW Version" tag 1005.

TerminalDeviceData_TLD byte[] R This property contains TLD tag info
retrieved from the terminal at start
up. See Ref. 1 for details

MethodRejectInfo string R This property contains a string
describing the reason why the last
method call has returned 0
(rejected a request).

MethodRejectCode int R This property contains a code
describing the reason why the last
method call has returned 0
(rejected a request). A list of
method reject codes is available in
Appendix A.

5.2 Write properties

These properties are also found in the baxi.ini file and can be both written to and read.

All have default values in the baxi.ini file.

Setting a property will override the corresponding entry in the baxi.ini file.

If all entries in the baxi.ini file are set by properties, the baxi.ini file will be redundant and can be removed.

Name Type I/O Description

LogFilePrefix string R+W A string which will be the prefix of
the log file name. The log file name
will end with the current date.

LogFilePath string R+W The path to the wanted log
directory.

BAXI.Net Programmers Guide

Page 16

TraceLevel int R+W Accepted values are valid trace
levels. Ex.

0 = OFF, 1 = Minimal (Error), 2 =
Low (Error + Trace), 3 = Medium
(Error + Trace + Debug)

BaudRate int R+W Accepted values are valid
baudrates. Ex 9600. If Use2KBuffer
is enabled then required baudrate is
57600 or more.

ComPort int R+W Accepted values are com ports (1
to 9). Ex 1.

HostPort int R+W Accepted value is an int in the
normal TCP/IP port number range
(0 to 65536).

HostIpAddress string R+W Accepted value is a string
containing an ip address, e.g.
192.168.1.1

MsgRouterOn short R+W Accepted values are 0 or 1. 0
means no Msg router used.

MsgRouterIpAddress string R+W This property sets the parameter
"IpAddress" from the ini-file.
Accepted value is a string
containing an ip address, e.g.
192.168.1.1

MsgRouterPort short R+W This property sets the parameter
"Port" from the ini-file. Accepted
value is an int in the normal TCP/IP
port number range (0 to 65536).

IndicateEotTransaction int R+W Accepted values are 0 or 1. 0
means no EOT indication.

CutterSupport int R+W Accepted values are 0 or 1. 0
means no cutter support.

PrinterWidth int R+W This property is in use only if the
application prints the content of the
PrintLine property. Default value is
60.
In BAXI, assigning the value 0 to
the PrinterWidth property makes
the terminal do all the printing
locally on the built in printer.

DisplayWidth int R+W Accepted values are 10 through 99.

BAXI.Net Programmers Guide

Page 17

a.

b.

c.

VendorInfoExtended string R+W This property contains four fields.

Vendor Name, this will be a 3
letter description supplied from
Nets to each vendor. Fixed
length, 3 letters (A-Z). Please
contact your local support at
Nets to agree unique code!
Vendor product/Application
name.
Vendor version/Application
version.
Tell ID, which should be used
as a unique id for the POS,
TVM, shop or similar that the
terminal is installed in. To be
able to identify where the
terminal is installed is a
demand in several markets, so
the system supplier should be
able to track the terminal
based on this information.

Rules:

Each field is terminated
by the delimiter ";". The
delimiter is mandatory.
(Always 4 delimiters in
string).
Maximum total length is
32 characters, including
the delimiters.
All fields except
VendorName have
variable length and must
be printable ASCII.

Sample:

BBS;Retail;02.13.01;5780734
3803;

PowerCycleCheck int R+W Checks if the attached terminal has
rebooted and if so, gives a warning
and aborts the current transaction.
The warning will be in the form of
an OnDisplayText event and an
OnPrintText event.

TidSupervision int R+W Checks if the attached terminal has
changed terminal id.
Locks BAXI if TID mismatch! No
transactions are allowed while BAXI
is locked! A user trying to access a
locked BAXI will receive an
OnDisplayText event and an
OnPrintText event with information
about the locked state.
To unlock BAXI, remove the file
"terminalid.txt", situated in the
runtime executable directory.

AutoGetCustomerInfo int R+W Accepted values are 0 or 1. 1
means enabling of automatic
Customer Info retrieval in the
terminal.
WARNING: This functionality is only
supported on terminal versions
07.1X and higher. It must be turned
off for older releases.

TerminalReady int R+W Accepted values are 0 or 1. 1
means enabling of terminal ready
signalling.

: This functionality isWARNING
only supported on terminal versions
07.1X and higher. It must be turned
off for older releases.

UseDisplayTextID Int R+W Accepted values are 0 or 1. 1
means enabling usage of display
text source identification and
display text identification. See 6.2
for more details.

BAXI.Net Programmers Guide

Page 18

UseExtendedLocalMode Int R+W Accepted values are 0 or 1. 1
means enable extended localmode.
This means that the ECR will get
new fields
in localMode.

SerialDriver String R+W Current possible values are:

Nets
Microsoft

The string is case sensitive.
Default value if not set is
"Microsoft".
For any implementation relying
on USB to rs232 comms, be it
directly through the Telium
USB interface, or through a
USB to rs232 adapter, it is
imperative to use the Nets
driver. This is because the
Microsoft implementation has
a flaw in discovering a removal
of such a device/com port. An
exception will be thrown which
is impossible to catch in BAXI,
resulting in the application
having to handle it or
crash/shut down.
The Nets serialport
implementation supports USB
rs232 solutions, as described
in 4.4

DeviceString String R+W The string is case sensitive. See
4.4 for more details.

UseSplitDisplayText Int R+W Accepted values are 0 or 1. 0
means to receive display text in
single display text message
towards ECR

LogAutoDeleteDays Int R+W Accepted values are integer on how
long we should save the Logging
file in number of days.

BluetoothTunnel Int R+W Accepted values are 0 or 1. 0
means bluetooth companion is not
used. To use bluetooth companion,
SocketListener needs to be set to 1,
too.

SocketListener Int R+W Accepted values are 0 or 1. 0
means don't setup a tcp server. 1
means setup a TCP-server on open
and listen on
SocketListenerPort.

SocketListenerPort Int R+W This is the port number that the
TCP-server will listen for Clients on.

Accepted values are between 1023
and 65535.

Use2KBuffer Int R+W Accepted values are 0 or 1. 0
means that the terminal shall use
the original 1Kbyte buffer. 1 means
use that the terminal shall have
increased buffer capacity of above
2Kbyte. If Use2KBuffer is enabled
then required baudrate is 57600 or
more.

DisplayTextInLocalMode Int R+W Accepted values are 0 or 1. 1
means that the ECR system
accepts display text in Local Mode

ClientID String R+W This is used when running baxi in a
multiinstance environment, to be
able to separate running
instances.Set the property to an
meaningful name.

UseMultiInstance Int R+W Accepted values are 0or 1. 1
means that baxi is running in
multiinstance environment.

BAXI.Net Programmers Guide

Page 19

MultiInstanceConfigFile String R+W This is the path and name of the
config file that will use when
running baxi in multiinstance
environment. Baxi will write clientids
to this file.

PreventLoyaltyFromPurchase Int R+W Accepted values are 0 or 1. 1
indicates the terminal that Purchase
request should never be treated as
the Loyalty request.

EnableEcrForm Int R+W Accepted values are 0 or 1. 1
means that a new ECR window
opens.

RunAsBaxiAgent Int R+W Accepted values are 0 or 1. 0
means that the new Ecr window
opens in baxi.net, and 1 means it
opens in baxi.client

EcrFormLanguage String R+W Accepted values are the languages
ISO Codes. (eg. EN, RO, FI)

 PinByPass Int R+W Accepted values are 0 or 1. 1
means that the Pin By Pass
functionality is supported by the
ECR.

EnableStoreBox Int R+W Accepted values are 0 or 1. 1
means that the Storebox
functionality is supported by the
ECR

StoreBoxAPIHost String R+W The host address provided by
Storebox

StoreBoxAuthToken String R+W The key is needed for the Storebox
system to authenticate the calling
system and authorize it to perform
the requested operation. This key is
provided by Storebox upon
registration

SplitAcquiring Int R+W Accepted values are 0 or 1. 1
means that the functiSplitAcquiring
onality is supported by the Baxi

BAXI.Net Programmers Guide

Page 20

1.
2.

1.
2.
3.

1.
2.

6 BAXI Methods

Except GetFirstPairedCompanionAddress and ActivateCompanion, all other methods will return immediately with either 1 (success) or 0
(failure).

The return value indicates if the BAXI component has accepted the request.

A successful call that puts the terminal in bank mode will generate an event and maybe other events as well.OnLocalMode

See Appendix B for common sequence diagrams.

Methods that do not set the terminal in bank mode:

SendTLD()
TransferCardData()
Close()

 The parameter operator ID has two different meanings:

Single TID terminal - identify the operator initiating a transaction.
Multi TID terminal - identify the logical terminal ID that shall be used in the transaction. Legal values 1-10. 1 is the master TID.

 If the parameter OperID is not used, it should be set to "0000".

6.1 General note on parameters.

Any method that expects parameters, will receive these in the form of an XYZArgs object.

For example, to call TranferAmount, a TranferAmountArgs object must be filled out and passed as a parameter to the TransferAmount
method.

6.2 Open

PARAMETER: NONE

RETURNS:

1 on success, local mode will follow
0 on failure, no local mode

 USAGE:

Call Open(). If Open() returns 0, check the MethodRejectCode to determine the cause of the failure
On success, wait for OnLocalMode and OnError event.
The result of OnLocalMode will determine if the dialogue was successful or not.

Initializes the control with the current values of the write properties and starts the communication with the terminal.

This method generates a device attribute dialogue with the terminal.

This method should be run at start up, after any write properties has been set.

6.3 Close

PARAMETER: NONE

RETURNS:

1 always (it never fails), no local mode.

USAGE:

Call Close().
Shut down system if applicable.

This method performs shutdown of communication with the terminal.

Synchronous, returns when operation completed.

IMPORTANT:

This method shall be called prior to shutting down BAXI/ECR!

BAXI.Net Programmers Guide

Page 21

1.
2.

3.

Neglecting to call Close() before shut down will result in resources not being released!

6.4 TransferAmount

PARAMETER: TransferAmountArgs args

RETURNS:

1 on success, local mode will follow
0 on failure, no local mode

USAGE:

Call TransferAmount(). If the function returns 0, check the MethodRejectCode to determine the cause of the failure.
On success, wait for OnDisplayText, OnPrintText, OnLocalMode and OnError events. Several OnPrintText events can occur during
a transaction.
The result of OnLocalMode will determine if the transaction was successful or not.

TransferAmountArgs content:

operID: string

See introduction.

type1: int

H30 = EFT Authorisation (KJØP) => Purchase amount

H31 = Return of Goods (RETU)

H32 = Reversal (ANNU) => Annulate last amount

H33 = Purchase with Cash back (KONT)

H34 = PRE Authorisation (GAR)

H35 = Adjustment (OPPG)

H36 = Balance Inquiry (DISP)

H37 = Complete Receipt (KVIT)

H38 = Deposit (INN)

H39 = Cash Withdrawal (UT)

H3A = Load e-purse card (LOAD)

H3B = Merchandise(Topup) Purchase

H3C = Merchandise(Topup) Reversal

H3D = Merchandise(Topup) Correction

H3E = Bonus

H40 = Force Offline

H41 = Incremental PRE Authorisation

H42 = Reversal PRE Authorisation => Partial and complete

H43 = Sale Completion PRE Authorisation

H44 = Bonus Refund

amount1: int

Total amount.

type2: int

H30 = not in use

amount2: int

Only used if <TYPE 1> = Purchase with Cashback (H33) –
Total purchase amount.

BAXI.Net Programmers Guide

Page 22

type3: int

H30 = not in use

H31 = not in use

H32 = VAT (Value added tax) amount.
The total tax amount supplied by the ECR.

amount3: int

VAT amount

hostdata: string

Variable field length, max 40 digits alfanumeric. The data is to be
sent to the HOST. The data characters must be in range H20 to
H7F. This field is optional.

articleDetails: string

Variable field, alphanumeric data. Each record is separated with
H1e, ASCII RS, A maximum of 3 records can be sent in one
message, each separated with RS.
The field is used to identify dedicated articles or reference to
articles. This field is optional. ART # must be filled with article
numbers in the purchase transaction ART # must be filled with
references to the articles in a reversal transaction and correction
transaction. This is application dependent, and must be clarified
in each project.
A Merchandise Reversal transaction and Merchandise Correction
transaction can only include one article at a time.

paymentCondition

Code:

string

Variable field length, max 3 alphanumeric char.

authCode: string

Authorisation Code field. Variable field length, max 6 characters.
Lower and upper case is allowed. Special characters like
‘@#£¤%&’ are NOT allowed.
This field is optional. The field is used for Force Offline
transactions.

OptionalData: string

Variable field, alphanumeric data. Each record is Optional Data
field. Variable field length, max 1024 ASCII characters.
The context, contents and format of this field is specified and
maintained by Nets Terminal IT. See ECR Chapter 13 Appendix
C

6.4.1 TransferAmont OptionalData Json fields

This section gives further details on the OptionData field in TransferAmount method.

OptionalData field can handle the following json tags.

6.4.1.1 autodcc

This tag is to specify the currency preference in advance in a transaction type if terminal settings, card and transaction type supports
currency conversion.

There are three possible values:

0: prompt cardholder to choose currency.
1: Auto select cardholder currency
2: Auto Select merchant currency

Optional field construction in dynamic currency conversion context:

BAXI.Net Programmers Guide

Page 23

{
 "od": {
 "ver": "1.01",
 "nets": {
 "ver": "1.00",
 "ch13": {
 "ver": "1.00",
 "ta": {
 "ver": "1.00",
 "o": {
 "ver": "1.00",
 "autodcc": 0
 }
 }
 }
 }
 }
}

Usecase autodcc 1:

The Customer has a card with cardholder currency in EUR. For the original purchase transaction the Customer was given a choice to pay
either in EUR or SEK.

The Customer opted to proceed with the cardholder currency, so he paid in EUR.

Now for a refund transaction, the Merchant already knows that the original transaction was in cardholder currency, so for a refund, there is no
need to prompt any DCC selection to the Customer. Instead go directly for DCC lookup.

Usecase autodcc 2:

The Customer has a card with cardholder currency EUR. For the original purchase transaction, the Customer was given a choice to either
pay in EUR or SEK.

The Customer opted to proceed with the merchant currency, so he paid in SEK.

Now for a refund transaction, the Merchant already knows that the original transaction was in merchant currency, so for a refund, there is no
need to go for DCC lookup.

6.4.1.2 merch

This tag is applicable only to multi terminal configuration to enable selection of multi-user by its BAX number.

This tag specifies merchant selection in a transaction request from ECR.

This is an alternative to the already existing operator id field for merchant selection from ECR.

BAXI.Net Programmers Guide

Page 24

1.

2.

{
 "od": {
 "ver": "1.01",
 "nets": {
 "ver": "1.00",
 "ch13": {
 "ver": "1.00",
 "ta": {
 "ver": "1.00",
 "o": {
 "ver": "1.00",
 "merch": 733300
 }
 }
 }
 }
 }
}

6.4.1.3 txnref

This tag assigns a Transaction Reference Number to the current transaction.

The same reference number can later be used for Administration Reversals by sending the same reference number used for a Purchase
earlier, thus specifically Reversing that transaction.

{
 "od": {
 "ver": "1.01",
 "nets": {
 "ver": "1.00",
 "ch13": {
 "ver": "1.00",
 "ta": {
 "ver": "1.00",
 "o": {
 "ver": "1.00",
 "txnref": "123456789123"
 }
 }
 }
 }
 }
}

6.4.2 Usage of Pre-Authorisation in TransferAmount

The OptionalData field is also used when doing pre-authorisation.

The flow of pre-authorisation transactions is the following:

A TransferAmount with 0x34 (Authorisation) is initiated from the ECR. This will reserve an amount on the credit card at the issuer.
This amount is an estimate of the final amount used later on in the Sale Completion as described in step 5.

BAXI.Net Programmers Guide

Page 25

1.

2.

3.

4.

5.

The terminal will respond with a localmode that holds a JSON formatted token in the OptionalData field. This token should be
entered in the OptionalData field when a future operation with this transaction is done. The data given in the OptionalData field looks
something like this:

{
 "od": {
 "ver": "1.01",
 "preauth": {
 "ver": "1.0",
 "auth": {
 "ver": "1.0",
 "token": {
 "ver": "1.0",
 "t": "6y9Em4Qpx0lXGwaAdaaBg2wEQmY=",
 "e": "140831"
 }
 },
 "data": {
 "ver": "1.0",
 "id": 3,
 "tpan": "457199******5001",
 "ref": "947011 124590",
 "TCC": D@1,
 "resp": "00"
 },
 "receipt": {
 "ver": "1.0",
 "cdt": {
 "ver": "1.0",
 "prnstr": [
 "VISA ",
 "************5001"
]
 }
 }
 }
 }
}

Optional A TransferAmount with 0x41 (Increment Pre-authorisation) is initiated from the ECR. This will add an amount to an
already authorised transaction. This means that the token received in step 2. must be added to the OptionalData field in the initiated
TransferAmount, this to give the terminal information about which transaction the new amount should be added on.

Optional A TransferAmount with 0x42 (Reversal Pre-authorisation) is initiated from the ECR. This will reverse the previously
authorised transaction. This cannot be applied after that a TransferAmount with 0x43 (Sale completion Pre-authorisation) has been
sent from the ECR.

A TransferAmount with 0x43 (Sale Completion Pre-authorisation) is initiated from the ECR. This will complete the previously
pre-authorised transaction. The token received in step 2 must be added in the OptionalData field of this TransferAmount.

6.4.3 Usage of PIN Bypass in TransferAmount

Viking terminal software version 04.91 and above has support for PIN Bypass feature that has to be separately enabled. Functionality is
disabled by default but can be enabled by using Baxi properties. Please see Baxi write properties for usage. When feature is disabled there
is no json messages requesting PIN Bypass.

PIN Bypass flow in Transfer amount:

 1. A transfer amount is initialized from the ECR.

 2. When the PIN Bypass functionality is enabled the merchant can choose to bypass the pin or not. Question will be raised during the PIN
request and for the process to continue there must be a response from ECR to the Baxi interface.

BAXI.Net Programmers Guide

Page 26

1.
2.

3.

 The ECR will receive a json message from the terminal:
 H49 = command code SEND DATA

 H3231: JSON format Request

 PIN Bypass Request format: { "confirm": { "ver": "1.00", "id": 1, "desc": "Pin bypass?" }}

 And the ECR will send json response with the chosen option:

 H49 = command code SEND DATA
 H3232: JSON format Response

 PIN Bypass Response format: { "confirm": {"ver": "1.00", "id": 1, "allow": 1 or 0 }}

6.5 Administration

PARAMETER: AdministrationArgs args

RETURNS:

1 on success, local mode will follow
0 on failure, no local mode

USAGE:

Call Administration(). If the function returns 0, check the MethodRejectCode to determine the cause of the failure.
On success, wait for OnDisplayText, OnPrintText, OnLocalMode and OnError events. Several OnPrintText events can occur during
an administration dialogue.
The result of OnLocalMode will determine if the administrative function was successful or not.

 Starts one of the administration dialogues.

AdministrationArgs content:

admCode: int

0x3030 = not used

...........

0x3039 = not used

0x3130 = RECONCILIATION function.

0x3132 = Cancellation request. The terminal has the choice to
ignore the request. The OnLocalMode result will determine the
final status of the transaction.

0x3134 = ANNUL from ECR should be mapped by ITU to perform
REVERSAL transaction.

0x3135 = Balance Inquiry.

0x3136 = X-report.

0x3137 = Z-report.

0x3138 = Send Offline Transactions to HOST.

0x313A = Print of stored EOT transactions.

0x313B=Finish current dialogue (behaves as Cancel, but silently).

0x313C = Print Latest Financial Transaction Receipt

0x313D = Send Latest Financial Transaction Result

0x313E = Start Software Download

0x313F = Start Dataset Download

 operID: string

See introduction.

Messages 0x313C and 0x313D are used to find out the result the previous transaction.

BAXI.Net Programmers Guide

Page 27

This will typically be used when an error or loss of communications occurs and the result of the transaction is unknown.

By using these messages, one can find out if the ITU completed the transaction or not, so that a decision can be made to either attempt the
transaction again or give the customer the proper receipt and goods.

0x313C gives the receipt copy as a printtext. 0x313D gives a Last Financial Transaction Result message (0x45) and its corresponding event
in BAXI.

See Ch. 8 for a common usage example and Ch. 6 for description of the Last Financial Transaction Result event.

6.5.1 Administration OptionalData Json fields

This section gives further details on the OptionData field in the Administration method.

OptionalData field can handle the following json tags.

6.5.1.1 merch

This tag is applicable only to multi terminal configuration to enable selection of multi-user by its BAX number.

This tag specifies merchant selection in a transaction request from ECR.

This is an alternative to the already existing operator id field for merchant selection from ECR.

{
 "od": {
 "ver": "1.01",
 "nets": {
 "ver": "1.00",
 "ch13": {
 "ver": "1.00",
 "ta": {
 "ver": "1.00",
 "o": {
 "ver": "1.00",
 "merch": 733300
 }
 }
 }
 }
 }
}

6.5.1.2 txnref

This tag is the Transaction Reference Number and is used for Administration Reversals by sending the same reference number used for an
earlier Purchase, thus specifically Reversing that transaction.

BAXI.Net Programmers Guide

Page 28

1.
2.
3.

{
 "od": {
 "ver": "1.01",
 "nets": {
 "ver": "1.00",
 "ch13": {
 "ver": "1.00",
 "ta": {
 "ver": "1.00",
 "o": {
 "ver": "1.00",
 "txnref": "123456789123"
 }
 }
 }
 }
 }
}

6.6 TransferCardData

PARAMETER: TransferCardDataArgs args

RETURNS:

1 on success, no local mode
0 on failure, no local mode

USAGE:

Call TransferAmount() to do a deposit.
Call TransferCardData(). If the function returns 0, check the MethodRejectCode to determine the cause of the failure.
On success follow the procedure of a normal transaction.

This method sends the information in a magnetic card track to the Terminal and the terminal will act as if the card was swiped locally on the
terminal.

The function is targeted at the specific use cases when card data is read with external device. Note! It is not intended nor allowed to be used
to enable the ECR to pass e.g. Visa/MasterCard or any other PCI-DSS card track contents to the terminal!

Only track 2 content cards are supported. Allowed only when the terminal is in bank mode, typically during a deposit.

TransferCardDataArgs content:

trackType: int

 0x32 = Origin track 2

0x40 = Origin Manually

 trackData: string

The track content.

6.7 SendTLD

PARAMETER: SendTldArgs args

RETURNS:

1 on success, sometimes local mode, depending on TLD tag range
0 on failure, no local mode

BAXI.Net Programmers Guide

Page 29

1.
2.

1.

USAGE:

Call SendTLD() to perfom a function. If the function returns 0, check the MethodRejectCode to determine the cause of the failure.
On success and if typeString is set to "REQ", wait for the response in the OnTLDReceived event.

This method is a general purpose method, used to trigger various functions.

This function will set the protocol in bank mode, thus end the dialogue with a local mode message when using TLD tags in the groups "Card
info" (range 2000) and "ECR info" (range 3000).

Currently, the function does not set the protocol in bank mode for requests in the 1000 range.

SendTldArgs content:

TldType: string

Specifies the TLD tag type.

Possible values are:

"REQ"
"CMD"

0x40 = Origin Manually

TldField: byte[] (array of bytes)

A TLD field built up as described in ref 1.

6.8 GetTLDTag

PARAMETER: byte[] wantedTldTag, byte[] tldBuffer, byte[] wantedTldTagValue

RETURNS:

1 on success, no local mode
0 on failure, no local mode

USAGE:

Call GetTLDTag() to retrieve a wanted tag value from a TLD buffer.

This method is a helper function for parsing a TLD buffer.

It is utilitarian in nature and does not use the EventArgs interface contract, like the other methods.

wantedTldTag: The wanted TLD tag.

tldBuffer: The TLD buffer in which to search.

wantedTldTagValue: On success this byte buffer will hold the wanted tag value.

6.9 SendJson

PARAMETER: SendJsonArgs args

RETURNS:

1 on success
0 on failure

USAGE:

Call SendJson() to perform a function.
If the function returns 0, check the MethodRejectCode to determine the cause of the failure.
On success Wait on the response in the OnJsonReceived event.

SendJsonArgs content: public string JsonData;

This is a general purpose method used to trigger various responses from either the terminal or the host.

JSON is preferred over TLD whenever applicable and adds more functionality then TLD.

Currently only TLD tag 3999 – CardInfo RequestAllTags – is covered by JSON but with every release of the Terminal Software more tags will

BAXI.Net Programmers Guide

Page 30

be added to the JSON interface until it completely deprecates TLD.

Firstly SendJson() replaces SendTld() in this fashion.

Secondly it adds the ability to query the Host for various Value Added Services. Because of the flexibility of this interface Baxi will not need to
be upgraded whenever a new such Value Added Service is provided, allowing for easy and quick integration in the ECR.

Thirdly, starting from Baxi.iOS v1.1.3.0 and later, it allows to send ECR print messages including text, barcode and bitmap to ITU so as to
support the use of terminal as ECR printer feature.

See chapter 9 for example use cases & see Appendix C for the instruction of ECR print JSON message.

6.10 BiBAdministration

PARAMETER: BiBAdministrationArgs args

RETURNS:

1 on success, local mode will follow
0 on failure, no local mode

USAGE:

Special custom function, see Ref [2]. Similar in usage to the Administration() method.

6.11 BiBTransaction

PARAMETER: BiBTransactionArgs args

RETURNS:

1 on success, local mode will follow
0 on failure, no local mode

USAGE:

Special custom function, see Ref [2]. Similar in usage to the TransferAmount method.

6.12 GetFirstPairedCompanionAddress

PARAMETER: NONE

RETURNS:

On success, companion's bluetooth address as string
On failure, an empty string

USAGE:

Call GetFirstPairedCompanionAddress().
Functions searches all Ingenico bluetooth companions paired with Windows and returns the first found companions bluetooth
address.

6.13 ActivateCompanion

PARAMETER: string bluetoothAddress

RETURNS:

1 on success
0 on failure

USAGE:

Call ActivateCompanion(<Bluetooth address>). Bluetooth address is max. 13 characters long string, e.g. "547F545948F1". If an
empty string or "0" is given as a parameter, Baxi will select the first Ingenico bluetooth terminal paired with Windows which it finds.

Activates Ingenico companion paired with Windows.

It should be enough to call this fuction just once unless the selected companion wants to be changed.

After calling this function Windows remembers the last selected companion.

BAXI.Net Programmers Guide

Page 31

When this function has been called and in baxi.ini there is setting BluetoothTunnel=1 under section [TCPIPSERVER], function Open will
open connection to activated bluetooth companion .

BAXI.Net Programmers Guide

Page 32

7. BAXI Events

7.1 General note on events

All event delegates that contain data, will give this data in EventArgs objects.

For example, the OnDisplayText event, will give a DisplayTextEventArgs object that contains the display text string and any other pertinent
fields as well.

Remark!

The event is fired from an internal thread in baxi.

The ECR client code is therefore executed from the baxi thread.

It is important to release the event handler as fast as possible to let the thread go back and wait for more events.

We recommend that the ECR programmer just create a new event and send the information to an internal thread of the ECR app.

7.2 OnDisplayText

public delegate void DisplayTextEventHandler(object sender, DisplayTextEventArgs e);

DisplayTextEventArgs contents:

DisplayText: string

A display text has been received from the terminal. Max length is
80 characters.

 DisplayTextSourceID: int

The source that generated the display text.

A TLD field built up as described in ref 1.

 DisplayTextID: int

The unique identifier of a display text.
Mostly intended for unattended solutions.
See 4.6 UseDisplayTextID.

7.3 OnPrinterText

public delegate void PrintTextEventHandler(object sender, PrintTextEventArgs args);

PrintTextEventArgs content:

PrintText: string

This is the printer text (the receipt) formatted in lines with a
maximum line length of 24 characters.
Several print text messages could come during a transaction.
Separators:

0xA = Separator line feed. Will be used throughout the
printText string to allow correct formatting of the receipts.
0xC = Separator end of text. Will be used at the very end of
every string to indicate the end of text.
0xE = Separator cutter(optional). Can appear if the property C

t is set. Can be used anywhere in the printTextutterSuppor
string to indicate a request to cut the receipt.

BAXI.Net Programmers Guide

Page 33

7.4 OnLocalMode

public delegate void LocalModeEventHandler(object sender, LocalModeEventArgs args);

Signals the application that a financial or administrative transaction is completed.

LocalModeEventArgs content:

LocalModeResultData : string

This parameter contains the complete local mode reply from the
terminal in raw format.

Result: int

This is the result of the transaction:
0 : Financial transaction OK, accumulator updated
1 : Administrative transaction OK, no update of accumulator
2 : Transaction rejected, no update of accumulator
3 : Transaction is Loyalty Transaction
99 : Unknown result. Lost communication with terminal. Baxi
has generated this local mode.

AccumulatorUpdate: int

H20 = indicates standard update of accumulator.
H21 = Not used in current software in the ITU.
H22 = indicates transaction is finalised as Offline transaction.
H23 .. H2F = Reserved for future use. The ECR shall finalise the
transaction as OK. Accumulator type is uncertain for the time
being.
H30 = indicates no update of accumulator.

IssuerId: int

This is the card issuer ID.

TruncatedPan: string

This parameter contains card information. The format is the card
number with length up to 19 digits.

Timestamp: string

This parameter contains the timestamp of the
transaction.
The format is YYYYMMDDHHMMSS

 VerificationMethod: int

This is a code for cardholder verification method
(CVM). The codes are:

0: Transaction is PIN based (default)
1: Transaction is signature based
2: No CVM. With or without amount confirmation by cardholder.1:
Transaction is signature based
3: Transaction is Loyalty Transaction
For the code 3, local mode result will always be 3
4 = “Consumer Device CVM” executed e.g. mPin in case of
Transaction done from mobile.

 TotalAmount: int

BAXI.Net Programmers Guide

Page 34

11byts numeric data(H30.. H39).

Used in:

Restaurant or Hotel environment where TIP is
added to the purchase amount on the ITU.
Used in the Purchase or Adjustment
transaction.
Transactions with surcharge. This total amount
will contain the sum of the original amount plus
the surcharge amount.

SessionNumber: string

This parameter contains the session number of
the transaction (3 bytes numeric data). This
number is global for a site and gets incremented
after a reconciliation.

StanAuth: string

This parameter contains the transaction reference
number. The length is 12 characters

SequenceNumber: string

4 bytes numeric data (H30 .. H39). This is the
customer number if the transaction was Pre-Auth
transaction. Must be used as reference in Transfer
Amount - Adjustment transaction.

 TotalAmount: int

This parameter is the Total ITU transaction
amount used in Restaurant or Hotel environment
where TIP is added to the purchase amount on
the ITU. It's also used if a surcharge fee is added
to the purchase amount on the ITU.

 RejectionSource: int

This parameter indicates the source for the
rejection. Fixed length, 2 characters. This field is
optional. Rejection sources will be added as they
are needed.
If a rejection source is present, there will always
also be a rejection reason present.

 RejectionReason: string

This parameter indicates the reason for a
rejection. Variable length, maximum 20
characters. This field is optional.
Rejection reasons will be added as they are
needed.
If a rejection reason field is present, there will
always also be a rejection source present.

 TipAmount: int

This parameter is used in Restaurant or Hotel
environment where TIP is added to the purchase
amount on the ITU.

 SurchargeAmount: int

BAXI.Net Programmers Guide

Page 35

This parameter is used if surcharge fee is added
to the purchase amount on the ITU.

 TerminalID: string

This parameter is the terminal ID.

 AcquirerMerchantID: string

This parameter is the Site ID.

 CardIssuerName: string

This parameter will be ApplicationLabel in case of chip cards

 ResponseCode: string

This parameter will contain PSP response codes in case of online
approved transactions & Y codes from terminal for offline
approved transaction.

 TCC: string

This parameter is Transaction Condition Code.3 byte
alphanumeric data.
Each byte indicates as following:
TCC [0] = Card Data Entry Method
TCC [1] = CVM Method
TCC [2] = Authorization Method

 AID: string

This parameter is Chip Card Application Identifier

 TVR: string

This parameter is Chip Card Terminal Verification Result

 TSI: string

This parameter is Chip Card Terminal Status Information

 ATC: string

This parameter is Chip Card Application Transaction Counter

 AED: string

This parameter is Chip Card Application Effective Data

 IAC: string

 This parameter is Chip Card Issuer Action Code

 OptionalData: string

Variable field length, max 1024 ASCII characters. The context,
contents and format of this field is specified and maintained by
Nets Terminal IT. See ECR Chapter 13 Appendix C - Optional
Data.

7.5 OnError

public delegate void BaxiErrorEventHandler(object sender, BaxiErrorEventArgs args);

OnError signals to the application that an error has occurred.

 BaxiErrorEventArgs contents:

ErrorCode: int

A list of error codes is available in Appendix A.

ErrorString: string

BAXI.Net Programmers Guide

Page 36

1.
2.
3.

A short textual description of the error.

7.6 OnTLDReceived

public delegate void TLDReceivedHandler(object sender, TLDReceivedArgs args);

This event receive a TLD tag data string from the terminal. See ref 1 for details.

 TLDReceivedArgs contents:

TldType: string

Specifies the TLD tag type.
Possible values are:

"RESP"
"STATUS"
"INFO"

TldData: byte[] (array of bytes)

A TLD field

7.7 OnJsonReceived

public delegate void OnJsonReceived(object sender, JsonReceivedArgs args);

This event receive a Json tag data string from the terminal. See ref.

JsonReceivedArgs contents:

JsonString: string

7.8 OnStdRsp

public delegate void StdRspReceivedHandler(object sender, StdRspReceivedArgs args);

This is an optional special purpose event. It triggers each time the terminal sends a response frame to BAXI.

A user wanting to make quick consecutive calls to BAXI can use this event to find out when BAXI has finished processing the last call.

Example of use:

TransferAmount();
Wait for OnStdRsp() event.
SendTLD();

StdRspReceivedArgs contents:

Response: string

The response code from the terminal. Always "00" per today.

7.9 OnTerminalReady

public delegate void TerminalReadyEventHandler(object sender, TerminalReadyEventArgs args);

WARNING: This functionality is only supported on terminal versions 07.1X and higher. It must be turned off for older releases.

This is an optional special purpose event.

It triggers each time the terminal determines that it has completed terminal management.

Typically, this will occur as the terminal goes into idle after an activity, like a purchase.

After this event has triggered, the terminal should always be ready to handle a new function, such as TransferAmount.

One other use is for performing a Close-Open sequence without disrupting terminal communication towards host, such as swapping between

BAXI.Net Programmers Guide

Page 37

two instances of BAXI.

TerminalReadyEventArgs contents:

There is no content so far for this EventArgs object.

7.10 OnLastFinancialResult

public delegate void LastFinancialResultEventHandler(object sender, LastFinancialResultEventArgs args);

This is a special purpose event.

It is sent by the ITU when the ECR invokes the message Admin(SendLatestFinancialResult(0x313D)).

The contents are identical to the contents of a Local Mode message, but it contains the results of the last/latest financial operation.

This data can be used to determine what happened to a transaction in case of communications errors or other causes of a loss of transaction
result.

7.11 OnBarcodeReader

public delegate void BarcodeReaderEventHandler(object sender, BarcodeReaderEventArgs args);

This is an event send from the terminal when the barcode reader is used on it. The String is in json format.

The barcode reader information is in json format.

BarcodeReaderEventArgs contents:

BarcodeText: string

BAXI.Net Programmers Guide

Page 38

8 Baxi.ini file

The baxi.ini file can be used to set up the environment for BAXI.

It should be placed in the same directory as the application executable running BAXI.

All the tag entries can also be set via properties. If there is a conflict between a tag entry and a property, the property always overrides the
init-file.

If all the init-file tag entries are set by properties, baxi.ini is redundant and can be removed altogether.

The baxi.ini file entries maps 1-1 to the writable properties.

See corresponding write property for details!

BAXI.Net Programmers Guide

Page 39

9 Common Use Cases

Here follows a list of example usage of the current transaction types.

Basic functions that should always be integrated in a POS application are:

Purchase
Purchase with cash withdrawal
Reversal
Return of goods
Reconciliation

It is important to implement reversal because it will be necessary to cancel a transaction if signature control fails or a similar situation.

US = 0x1F
RS = 0x1E

9.1 Transactions

9.1.1 Purchase

Normal purchase transaction request(10.00 kr):

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x30;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

Normal purchase transaction request (10.00 kr) with VAT (3 kr):

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x30;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x32;
a.Amount3 = 300;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

BAXI.Net Programmers Guide

Page 40

Normal purchase transaction request (10.00 kr) with loyalty info ("abcdefg") :

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x30;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "abcdefg";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

Normal purchase transaction request (10.00 kr) with payment condition code "2":

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x30;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "2";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

9.1.2 Return of goods

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x31;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

BAXI.Net Programmers Guide

Page 41

9.1.3 Reversal

Reversal of the last transaction (10 kr).

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x32;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

9.1.4 Purchase with Cashback

Purchase transaction request (10.00 kr) with cash back (2 kr):

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x33;
a.Amount1 = 1200;
a.Type2 = 0x30;
a.Amount2 = 1000;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

9.1.5 Balance inquiry

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x36;
a.Amount1 = 0;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

BAXI.Net Programmers Guide

Page 42

9.1.6 Deposit

Can be used for example to deposit money on gift cards.

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x38;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

9.1.7 Cash withdrawal

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x39;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

9.1.8 Force Offline

Force an offline purchase of amount 1000 with authcode of 'ABC'.

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x40;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "ABC";
int result = Baxi.TransferAmount(a);

BAXI.Net Programmers Guide

Page 43

9.1.9 Pre-Authorisation

a) Done in at least two parts where the initial part Authorises an estimated amount, in this case Amount1=1000.

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x34;
a.Amount1 = 1000;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "ABC";
int result = Baxi.TransferAmount(a);

In the OnLocalMode response keep what is sent in args.getOptionalData():

{
 "od": {
 "ver": "1.01",
 "preauth": {
 "ver": "1.0",
 "auth": {
 "ver": "1.0",
 "token": {
 "ver": "1.0",
 "t": "WZyq1XadTyso8AnpJdCT1GPKWUw=",
 "e": "140903"
 }
 },
 "data": {
 "ver": "1.0",
 "id": 4,
 "tpan": "521358****2083",
 "ref": "591504 125853",
 "TCC": "D@1",
 "resp": "00"
 },
 "receipt": {
 "ver": "1.0",
 "cdt": {
 "ver": "1.0",
 "prnstr": [
 "MASTERCARD ",
 "**********2083"
]
 }
 }
 }
 }
}

BAXI.Net Programmers Guide

Page 44

b) Use the OptionalData token from the original Authorisation to append any additional estimated Amount – in this example Amount1=500.

This doesn't require the card of the Customer. This is an optional step that is not needed to finish the transaction.

Escape any quotation marks in the middle of the OptionalData String.

BAXI.Net Programmers Guide

Page 45

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x41;
a.Amount1 = 500;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "ABC";
a.OptionalData =
"{\"od\":{\"ver\":\"1.01\",\"preauth\":{\"ver\":\"1.0\",\"auth\":{\"ver\
":\"1.0\",\"token\":{\"ver\":\"1.0\",\"t\":\"WZyq1XadTyso8AnpJdCT1GPKWUw
=\",\"e\":\"140903\"}},\"data\":{\"ver\":\"1.0\",\"id\":4,\"tpan\":\"521
358*****2083\",\"ref\":\"591504
125853\",\"TCC\":\"D@1\",\"resp\":\"00\"},\"receipt\":{\"ver\":\"1.0\",\
"cdt\":{\"ver\":\"1.0\",\"prnstr\":[\"MASTERCARD
\",\"***********2083\"]}}}}}";

int result = Baxi.TransferAmount(a);

c) The final part is the Sale Completion. Please note that the final Amount may differ somewhat from the initially estimated Authorisation, in
this case Amount1=1600.

This doesn't require the Customer's card.

BAXI.Net Programmers Guide

Page 46

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x43;
a.Amount1 = 1600;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "";
a.PaymentConditionCode = "";
a.AuthCode = "ABC";
a.OptionalData =
"{\"od\":{\"ver\":\"1.01\",\"preauth\":{\"ver\":\"1.0\",\"auth\":{\"ver\
":\"1.0\",\"token\":{\"ver\":\"1.0\",\"t\":\"WZyq1XadTyso8AnpJdCT1GPKWUw
=\",\"e\":\"140903\"}},\"data\":{\"ver\":\"1.0\",\"id\":4,\"tpan\":\"521
358*****2083\",\"ref\":\"591504
125853\",\"TCC\":\"D@1\",\"resp\":\"00\"},\"receipt\":{\"ver\":\"1.0\",\
"cdt\":{\"ver\":\"1.0\",\"prnstr\":[\"MASTERCARD
\",\"***********2083\"]}}}}}";
int result = Baxi.TransferAmount(a);

9.2 TopUp

These are typically used to load a mobile phone with more call time. See ref 1 for details.

The EAN number of the transaction is specified in the articleDetails parameter.

Buy a NetCom 150 TopUp code:

BAXI.Net Programmers Guide

Page 47

1.
2.
3.

TransferAmountArgs a = new TransferAmountArgs();
a.OperID = "0000";
a.Type1 = 0x3B;
a.Amount1 = 1600;
a.Type2 = 0x30;
a.Amount2 = 0;
a.Type3 = 0x30;
a.Amount3 = 0;
a.HostData = "";
a.ArticleDetails = "07021940002810" + "\x1e"; // record separator
a.PaymentConditionCode = "";
a.AuthCode = "";
int result = Baxi.TransferAmount(a);

Receive the topup code from the OnTLDReceived event, TLDReceivedArgs contents:

RS = "\x1e", US = "\x1f"

TldType : "INFO"
 "4005" + US + "00066" + US + "07021940002810" + US + "00000000833" + US + "7146417457411" + US + "0000004266-94-79" +TldData:

US + "0015000" + RS

9.3 Gift Card

Gift card is implemented as a two transaction solution.

First do a normal purchase with the customer card.
Do a deposit with the same amount as the customer purchase.
Send the track 2 content of the giftcard with the TransferCardData() function.

The terminal will finish the deposit on the gift card.

9.4 Group ID

Group ID is a function used to separate cards within the same range based on values returned from the card.

This functionality is currently only supported by BBS cards.

This functionality is used in situations where you want to give different prices to customers with the same type of prepaid BBS cards, typically
in canteens used by more than one company, where employees from the different companies gets different prices.

To retreive the Group ID use the following sequence:

Call the function SendTLD() specifying a Group ID request:

SendTldArgs a = new SendTldArgs();
a.TldType = "REQ";
a.TldField = "3000";
Baxi.SendTLD(a);

Get the group ID from the OnTLDReceived event, TLDReceivedArgs contents:

TldType : "RESP"
 "3000" + US + "0005" + US + "12345" + RSTldData :

9.5 Get encrypted card data

Call the function SendTLD() specifying a request encrypted card data:

BAXI.Net Programmers Guide

Page 48

SendTldArgs a = new SendTldArgs();
a.TldType = "REQ";
a.TldField = "3007";
Baxi.SendTLD(a);

Read the encrypted card data in the OnTLDReceived event, TLDReceivedArgs contents:

TldType : "RESP"
 "3007" + US + "0015" + US + "000000000000000" + RSTldData :

This currenly only works in Norway.

9.6 Get encrypted card data and issuer ID

Call the function SendTLD() specifying a request encrypted card data and issuer:

SendTldArgs a = new SendTldArgs();
a.TldType = "REQ";
a.TldField = "3008";
Baxi.SendTLD(a);

Read the encrypted card data in the OnTLDReceived response, TLDReceivedArgs contents:

TldType : "RESP"
 "3008" + US + "0015" + US + "000000000000000" + RSTldData :

This currently only works in Norway.

9.7 Send a track 2 card swipe to the terminal:

TransferCardDataArgs a = new TransferCardDataArg();
a.TrackType = 0x32;
a.TrackData = "9571921000000000236";
Baxi.TransferCardData(a);

9.8 TIP

To be able to use tip, the service has to be enabled for the terminal.

This can be ordered from your dealer.

If the amount received in the amount field in the Local Mode message from the terminal is larger than the amount sent to the terminal in the
Transfer Amount message, the difference should be treated as tip.

9.9 Check host connection

Call the function SendTLD() specifying a request for host connection status:

BAXI.Net Programmers Guide

Page 49

 SendTldArgs a = new SendTldArgs(); a.TldType = "REQ"; a.TldField =
"1012"; Baxi.SendTLD(a);

Read the host connect status in the OnTLDReceived response, TLDReceivedArgs contents:

Ex connected to host:

TldType : "RESP"
 "1012" + US US RSTldData : + "0001" + + "0" +

9.10 Set terminal language

Call the function SendTLD() specifying setting terminal language.

Ex English:

 SendTldArgs a = new SendTldArgs();
 a.TldType = "CMD";
 a.TldField = "1014" + US + "0002" + US + "en" + RS;
 Baxi.SendTLD(a);

9.11 Receive a card inserted status event

The terminal can be set to send events when a card is inserted or removed.

Read the status in the OnTLDReceived function.

Ex card inserted:

TldType : "STATUS"
 "1013" + US US RSTldData : + "0001" + + "1" +

9.12 "Get Customer Info"

: This functionality is only supported on terminal versions 07.1X and higher. It must be turned off for older releases.WARNING

The generic TLD format is defined in [1].

The ECR invokes the Get Customer Info by sending a TLD request with the following tags in the given order:

"2000" + US + "0003" + US + "001" + RS +
"2002" + US + "0003" + US + "001" + RS +
"2001" + US + "0000" + US + RS

The tags be in the order above for the request to work. must

The ITU typically returns the customer information from the above request in the following manner:

"2000" + US + "0003" + US + "001" + RS +
"2002" + US + "0003" + US + "001" + RS +
"2001" + US + "0032" + US + "00987654 " + RS +
"2003" + US + "0002" + US + "00" + RS

BAXI.Net Programmers Guide

Page 50

1.

2.

1.

2.

 When the ITU sends a TLD Status "Card inserted with Issuer ID" message, it typically contains the following (for a BankAxept card, issuer
30):

"1013" + US + "0001" + US + "1" + RS +
"3002" + US + "0010" + US + "0000000030" + RS

To receive the issuer ID tag in the card status message, the parameter for sending issuer ID with card status must be enabled in the ITU.

There are 2 normal use cases for the Customer Info functionality.

The ECR always initiates a GetCustomerInfo, before the purchase. (Automatic retrieval of Customer Info is turned on in the ITU). It is
then the ITU which decides if there should be a request to the host, based on Issuer ID and terminal configuration.

The ECR receives "card inserted with issuer ID" from the ITU and based on issuer ID elects to initiate a customer info request or not.

Below are these 2 use cases described in detail. The data within the messages will typically be as described above.

ECR initiates GetCustomerInfo.

The parameter for sending card status messages should be disabled for this scenario. This is because it is not needed by the ECR
and it can also increase the risk of collisions and retransmissions.

Automatic customer info retrieval is enabled.

Sequence:
The ECR will always initiate a transaction with a GetCustomerInfo request to the ITU through a TLD Request.
The terminal goes into Bank Mode.
The terminal will either ask for a card, or start processing if a card is already inserted or swiped.
The terminal will return the Customer Info to ECR through a TLD Response and remains in bank mode. It is awaiting a
TransferAmount transaction.
The ECR processes the Customer Info and initiates a transaction. It is also possible to send an Admin Cancel (or Admin
finish, see below) at this stage, if the ECR is not interested in any additional actions other than the customer info data.
The ITU will complete any transaction or cancellation with a Local Mode message

ECR reacts to Card Inserted.

Automatic customer info retrieval is disabled. "Card status messages with Issuer ID" is enabled in the ITU.

Sequence:

The ITU will send a TLD Status message with "Card inserted and Issuer ID" to the ECR, when the customer inserts or
swipes a card in the ITU.
ECR processes the Issuer ID and decides if it should send a Get Customer Info request or not.
ECR sends a Customer Info TLD Request.
The ITU goes into Bank Mode.
The ITU requests the customer info from the host and sends a TLD Response with Customer Info to the ECR.
The ITU then awaits further action from the ECR and remains in Bank Mode.
The ECR processes the Customer Info and normally sends a TransferAmount message to the ITU.
The ITU will handle the transaction like normal and complete it with a Local Mode message.

9.13 "Get Customer Info" with Admin Finish.

For the "Get Customer Info" dialogues or any other TLD request dialogue, the terminal can remain in Bank Mode and expect a final
transaction to take place.

There are occurrences where such a transaction will not take place and the ECR wishes to force the Terminal out of bank mode and back to
idle.

This effectively completes the operation/dialogue and makes the terminal ready for a new operation/dialogue. This has been achieved with
Admin Cancel in the past.

This has the unwanted behaviour of the terminal aborting the transaction in full, including display texts and showing "Cancelled by operator"
in its display etc.

The Admin Finish command is an alternative to Admin Cancel in these cases, where it is better for the terminal to silently abort and revert to
Local Mode and showing an idle screen.

9.14 Investigating results of last financial transaction.

If an error occurs in the middle of a transaction, BAXI will return an error and a local mode result of "Unknown".

BAXI.Net Programmers Guide

Page 51

If such an error or other errors make the result of a transaction unavailable or incomplete, one can use the administration functions "Print
Latest Financial Transaction Receipt" and "Send Latest Financial Transaction Result" to fetch the result from the ITU.

This is a complement to the manual routines to provide an integrated solution for this problem for ECR vendors.

Let us assume that a transaction is unknown. To retrieve all necessary information, the ECR will have to perform the following:

int result = Baxi.Administration(new AdministrationArgs(0x313C,
"0000"));

This results in a PrintText event, which will contain a copy receipt of the latest financial transaction result.

This is identical to entering the ITU menu and manually print out the copy receipt.

After the Local mode is received (administration is done), the ECR can send the next administration message to get the Latest Financial
transaction result, which contains the Local mode data from the last financial transaction.

int result = Baxi.Administration(new AdministrationArgs(0x313D,
"0000"));

This results in a LastFinancialTransactionResult event, which contains the local mode identical data from the last financial transaction.

The administration operation is then completed with a local mode message.

9.15 JSON replacing TLD.

9.15.1 CardInfo RequestAllTags(3999) using sendJson

As described in chapter 6 sendJson() replaces sendTld(). ECR can query Baxi to retrieve any information available about the current card.

If a card is not present then it will be requested by the terminal after this call.

9.15.2 sendTld

As reference this is how it is used with sendTld():

SendTldArgs a = new SendTldArgs();
a.TldType = "REQ";
a.TldField = "3999";
Baxi.SendTLD(a);

OnTLDReceived returns the following where US is replaced by " " and RS by linefeed in the example:

3000 0000
3001 0016 <six digits>******<four digits>
3002 0001 3
3003 0003 752
3004 0001 Y
3005 0001 Y
3009 0000
3011 0003 D__
3012 0008 STANDARD
3013 0000
3014 0000

9.15.3 sendJson

This is how it is done using sendJson() to send the same thing using the following JSON:

BAXI.Net Programmers Guide

Page 52

{
 "cardinfo": {
 "ver": "1.00",
 "alltags": "?"
 }
}

Code:

SendJsonArgs args = new SendJsonArgs(
 "{\n" +
 " \"cardinfo\": {\n" +
 " \"ver\": \"1.00\",\n" +
 " \"alltags\": \"?\"\n" +
 " }\n" +
 "}");
baxi.sendJson(args);

OnJsonReceived returns the following:

{
 "cardinfo": {
 "ver": "1.00",
 "iccgrpid": "",
 "pan": "<six digits>******<four digits>",
 "issid": "3",
 "countrycode": "752",
 "restrictions": "Y",
 "fee": "Y",
 "track2": "",
 "tcc": "D__",
 "bankagent": "STANDARD",
 "track3": "",
 "loyaltyinfo": ""
 }
}

9.16 JSON and Multiterminal

A single terminal can be configured with different TerminalId and therefore allow for separated configuration.

To use sendJson with Multiterminal add the optional tag "o" and "merch" with the six digit bax number to the JSON call.

The bax Number is the first six digits of the TerminalId. This is also seen on the receipt as TERM: <6 digit bax number ><2 digit id>-<6 digit
bax number> i.e. TERM: 11223344-112233.

In this example the bax Number is 112233 and the TerminalId 11223344.

For single TerminalId terminals this optional "merch" tag is ignored.

BAXI.Net Programmers Guide

Page 53

"o": {
 "ver": "1.00",
 "merch": 112233
}

Used with CardInfo RequestAllTags the JSON call will look like this:

{
 "cardinfo": {
 "ver": "1.00",
 "alltags": "?"
 },
 "o": {
 "ver": "1.00",
 "merch": 112233
 }
}

9.17 JSON and VAS (Value Added Services)

Any number of Value Added Services can be used through the transparent Baxi JSON interface towards the Host.

JSON is sent using sendJson() in Baxi and the response comes back in OnJsonReceived in the form of another JSON.

Specific VAS will not be detailed here as this guide will remain service agnostic.

9.18 JSON and Terminal as an ECR Printer

The ECR print request\response messages are used for the feature of Terminal as an ECR printer that can handle text, barcode and bitmap
print requests from ECR.

You can build the ECR print request in a JSON format(see for the detailed information of JSON tags).Appendix D

JSON is sent using sendJson() in Baxi and the response coming back in OnJsonReceived event in the form of another JSON.

If your ECR print request message size is large, Baxi will automatically split it into several ECR print requests and send them one by one.

The onLocalMode event will be fired as an consequence.

The result of onLocalMode will determine if the print process was successful or not.

Please ensure that JSON request doesn’t contain any redundant spaces while using JSON tags.

9.19 Split Acquiring

The purpose of the functionality is to allow a merchant to seamlessly offer the DCC-service using one Acquirer/Acquirer agreement and
provide domestic (Non-DCC) transactions for a different Acquirer/Acquirer agreement.

BAXI.Net Programmers Guide

Page 54

1.

2.

1.

10 MultiCurrency functionality

10.1 Introduction & Setup

MultiCurrency functionality is used to make card transactions using desired terminal profile selected by the OperID.

The correct OperID and currency code are settled by Baxi.NET by using the offline BIN -tables(s).

There can be up to 10 different profiles in terminal for different currencies.

Baxi.NET gets the PAN from terminal as a result for CardInfo Json
Baxi.NET iterates through offline BIN table and adds corresponding "baxi_currencycode" and "baxi_operid": to Json Repsonse
ECR uses baxi_currencycode to set the correct amount for TransferAmount
ECR uses "baxi_operid" in TransferAmount to detect desired terminal profile

Enable multicurrency in baxi.ini
[MULTICURRENCY]
Set when using multicurrency functionality(Several terminal profiles with different currencies)

MultiCurrencyPath defines the path where MultiCurrency is located.
If let blank default path is the location of baxi_dotnet.dll
Set path with backslash at the end eg. c:\baxi\
UseMultiCurrency=1
MultiCurrencyPath=""

Edit MultiCurrency.xml
MultiCurrency.Xml have to be located in same directory as baxi_dotnet.dll

<!-- This is BAXI.NET Multicurrency configuration file -->
<!-- OperID identify the logical terminal ID that shall be used in the transaction. Legal values 0001-0010. 0001 is the master TID. -->
<!-- CurrencyCode defines the currency used with OperID -->
<!-- CurrencyFile defines the file which icludes the PANs mapped to OperID -->
<!-- All PANs which are not in CurrencyFiles fall into OperID without CurrencyFile -->

<?xml version="1.0" encoding="utf-8" ?><MultiCurrency>
<Terminal OperID="0001" CurrencyCode="978" />
<Terminal OperID="0002" CurrencyCode="752"
CurrencyFile="Currency752.txt"/>
<!-- <Terminal OperID="0003" CurrencyCode="" CurrencyFile=""/> -->
<!-- <Terminal OperID="0004" CurrencyCode="" CurrencyFile=""/> -->
<!-- <Terminal OperID="0005" CurrencyCode="" CurrencyFile=""/> -->
<!-- <Terminal OperID="0006" CurrencyCode="" CurrencyFile=""/> -->
<!-- <Terminal OperID="0007" CurrencyCode="" CurrencyFile=""/> -->
<!-- <Terminal OperID="0008" CurrencyCode="" CurrencyFile=""/> -->
<!-- <Terminal OperID="0009" CurrencyCode="" CurrencyFile=""/> -->
</Multicurrency

10.2 Testing multicurrency

Send Json cardinfo with one of the terminals merchant ID

BAXI.Net Programmers Guide

Page 55

1.

2.

3.

4.

{
 "cardinfo": {
 "ver": "1.00",
 "alltags": "?"
 },
 "o": {
 "ver": "1.00",
 "merch": 733300
 }
}

Insert card and select card type if required

Check that baxi_currencycode and baxi_operid exist in Json response and are according to setup in MultiCurrency.xml
Json:

{
 "cardinfo": {
 "ver": "1.00",
 "iccgrpid": "",
 "pan": "527592******4796",
 "issid": "4",
 "countrycode": "246",
 "restrictions": "-",
 "fee": "-",
 "track2": "",
 "tcc": "I__",
 "bankagent": "",
 "track3": "",
 "loyaltyinfo": "",
 "baxi_currencycode": "752",
 "baxi_operid": "0002"
 }
}

Make TA with OperID returned in JSON -response and check that correct terminal profile is used for transaction

BAXI.Net Programmers Guide

Page 56

1.
2.

11 Best practice implementation of security in the ECR interface.

These are recommendations regarding some of the security functions offered with Baxi and Nets terminals.

Recommended practice is to implement all functions with high security.

These recommendations are based on experienced skimming practices which mainly have been:

Skimming equipment is mounted on the terminal when the shop is closed.
The shops terminal is replaced with a terminal with skimming equipment mounted.

Powercyclecheck is designed to counter scenario 1, while the other functions are designed to counter scenario 2.

Function Low security Medium security High security

VendorInfo extendended.

Data reported by ECR to terminal.
Readable by Nets.

Identification of pos application
supplier in the vendorinfoextended
string

Identification of pos application
supplier and Identification of sit e in
the vendorinfoextended string

Identification of pos application
supplier and unique Identification
of POS in the vendorinfoextended
string

Powercyclecheck

Checks when the terminal has been
tuned on and off.

Turned off Turned on Action demanded from the POS
operator on the OnDisplayText
generated

Tidcheck

Checks if the TID (Terminal lD) of
the terminal has changed.

Turned off Turned on Turned off in Baxi.ini, but
implemented tid check in the POS
application with action required
from the pos operator on tid
change, Preferable with operator
authentication.

Serial number check

Checks if the physical serial
number of the terminal has
changed.

No serial number check. Implement serial number check in
the POS application with action
required from the pos operator on
serial number.

Implement serial number check in
the POS application with action
required from the pos operator on
serial number change with operator
authentication.

BAXI.Net Programmers Guide

Page 57

12 Deprecated Functions

These functions will be supported for backwards compatibility.

BAXI.Net Programmers Guide

Page 58

13 Removed Functions

These functions have been removed entirely and are no longer supported

13.1 TransferAmount_V2

Replaced by TransferAmount_V4.

Same as TransferAmount_V4 but without the parameter PaymentCardCondition and AuthCode.

13.2 TransferAmount_V3

Replaced by TransferAmount_V4.

Same as TransferAmount_V4 but without the parameter AuthCode.

13.3 TransferAmount_V4

13.4 Administration(int admCode, string OperId)

Replaced by the new Args type interface Administration(AdministrationArgs args).

13.5 SendTLD(string typeString, byte[] tldField)

Replaced by the new Args type interface SendTLD(SendTldArgs args).

13.6 TransferCardData(int trackType, string trackData)

Replaced by the new Args type interface TransferCardData(TransferCardDataArgs args).

13.7 BiBAdministration(int AdmCode, string OperID)

Replaced by the new Args type interface BiBAdministration(BiBAdministrationArgs args).

13.8 BiBTransaction(int amount, string transactionData)

Replaced by the new Args type interface BiBTransaction(BiBTransactionArgs args).

BAXI.Net Programmers Guide

Page 59

14 Appendices

14.1 Appendix A – Status codes

14.1.1 Error codes

Error code Description

2011 Error when sending message

2012 Error when receiving message

6006 Baxi locked

7001 Unknown Error

Error code MsgRouter errors

2100 MsgRouter Error Range starts with 2100, this code is not used.

2101 General msgrouter error

2102 Msgrouter timeout

2103 Socket error

2104 Message length error

2105 Sending of message failed

2106 Connection error

Socket (Server) Errors (Range 2111-2199)

2111 General socket error

2112 Socket timeout

2113 Socket error

2114 Message length error

2115 Message sending failed

2116 Socket connection error

7005 Open rejected

7007 Obsolete terminal version

7008 No host contact.

7009 No response from terminal

7010 Create log directory fail

7011 Open IO fail

7012 Unexpected frame

7013 Close rejected

7015 Unknown terminal frame

7016 Terminal Reboot Detected

14.1.2 Method reject codes

Method Reject code Description

BAXI.Net Programmers Guide

Page 60

General cases

7100 Processing previous command

7101 Unable to process

7102 Already Open

7103 Not Active

7104 Terminal busy, administration

7106 Terminal has rebooted (informative)

Property bad values

7401 Log file prefix

7402 Log file path

7403 Host IP address

7404 Vendor info extended

7405 Trace level

7406 Baud rate

7407 COM port

7408 Host port

7409 Indicate EOT transactions

7410 Cutter support

7411 Printer width

7412 Display width

7413 Power cycle check

7414 TID supervision

7415 Auto get customer info

7416 DeviceString

7420 Terminal ready

7421 UseDisplayTextID

7422 UseExtendedLocalMode

7423 MsgRouterIpAddress

7424 MsgRouterOn

7425 MsgRouterPort

7426 UseSplitDisplayText

7427 DisplayTextInLM

7428 Always Use Total Amount In ExtendedLM

7429 Client ID

7430 Socket Listener

7431 Bluetooth Tunnel

Function argument bad values

BAXI.Net Programmers Guide

Page 61

7501 Only track 2 support

7502 Invalid track length

7503 Transfer amount invalid type

7504 Transfer amount data too long

7505 Transfer amount article details too long

7506 Invalid operator ID

7507 Invalid administration code

7508 TLD unknown type

7509 TLD bad field value

7510 TLD could not build

7511 Transfer amount PCC too long

7512 Transfer amount PCC not alphanumeric

7513 Transfer amount AuthCode too long.

7514 Transfer amount AuthCode not alphanumeric.

7515 JSON Bad field value

7516 Transfer amount Optional Data too long.

Multi instance cases

7601 Multi instance clientid not existing

7602 Multi instance clientid in use

7603 Multi instance bad config file

Multi currency cases

7700 PAN not numeric

7701 Load failed

7702 Operator ID missing

7703 File error

7704 XML error

7705 Currency code missing

14.2 Appendix B – Sequence diagrams

14.2.1 Initialisation

BAXI.Net Programmers Guide

Page 62

14.2.2 Successful purchase

14.2.3 Unsuccessful purchase

BAXI.Net Programmers Guide

Page 63

14.2.4 Purchase with an error situation

BAXI.Net Programmers Guide

Page 64

14.3 Appendix C – ECR Print Request\Response

Message Type Tag Name JSON Tag Object type Mandatory\
Optional

Length (bytes) Description

Request/
Response

Print message printmsg Object M - Current version:
1.00

Request Print lines rows Array M -

Request Print content type String M - Possible values:

"txt": Text content

"bcode": Barcode

"bmp": Bitmap

Text content related JSON tags

Request Print Text data String O - For ex.

"data": "sample
text"

Prints a line with
text as "sample
text".

"data": "*"

Prints a line filled
with the given char.

"data": ""

Prints a blank line.

Note: The print
width depends on
font and text width
given. Refer table
4.4.1 below.

BAXI.Net Programmers Guide

Page 65

Request Text font font String O - Possible values:

"normal" (default
value)

"bold"

"small"

"large"

Request Text width w String O - Possible values:

"fix" (default value)

"prop"

Request Text alignment align String O - Possible values:

"left" (default value)

"center"

"right"

Request Reverse reverse Integer O - Possible values:

0 (default value)

1

Request Blank lines blank Integer O - Possible values: <=
20

Note: Add this tag
to add 15 lines in
the end of receipt
to get receipt out of
printer.

Barcode content related JSON tags

Request Barcode symbol symbol String M - Possible values:

"code128"

"code25"

"code39"

"ean8"

"ean13"

"pdf417"

"qrcode"

Request Barcode data data String M -

1D barcode symbol specific tags

Request Barcode 1 bar
height

h Integer O - Possible values: >=
50 pixels

Default as 50
pixels

Request Barcode 1 bar
width

w Integer O - Default as 2 pixels

Request Direction dir Integer O - Possible values:

0: Horizontal
(default value)

1: Vertical

Request Alignment align String O - Possible values:

"left" (default value)

"center"

"right"

BAXI.Net Programmers Guide

Page 66

Request Print barcode text value Integer O - Possible values:

0: Don't print
(default value)

1: Print

2D barcode symbol specific tags

Request Rotate barcode rotate Integer O - Possible values: in
degrees

0 (default value)

90

180

270

Note: tag applies to
PDF417 only.

Request Barcode size size Integer O - Allowed range:

Between 63 and
384, both values
inclusive.

Default values are
used depending on
barcode text.

Note: tag applies to
qrcode only.

Request Barcode mode mode Integer O - Possible values: in
degrees

0: Numeric mode
(default value)

1: alphanumeric
mode

2: 8 bit data mode

3: kanji (shift-jis)
mode

Note: tag applies to
qrcode only.

Bitmap content related JSON tags

Request Bitmap data data String M - Data must be
Base64 encoded.

Request X coordinate x Integer O - Allowed range: in
Pixels

[0,383]

Request Y coordinate y Integer O - Allowed range:

[0, bitmap height]

Request Reverse reverse Integer O - Possible values:

0 (default value)

1

Terminal automatically moves the remaining text into next line if the length of the string received, exceeds than the number of characters that
can be printed in a single line based on font and text width.

Font Text Width Allowed number of characters in a line (Excluding null char)

normal fix 24

prop 24 - 35

bold fix 11

BAXI.Net Programmers Guide

Page 67

prop 14 - 21

small fix 48

prop 52 - 65

large fix 12

prop 14 - 17

ECR print response possible status texts description:

Text print errors Description

-1 The font is not in the font file, nothing is printed

-2 Character in the message is not in the font.

-3 Margins are too big, nothing is printed

PDF417 barcode errors Description

-1 Columns must be between 1 and 30, inclusive.

-2 Rows must be between 3 and 90, inclusive.

-3 Error Correction level should be from 1 to 8.

-4 Size of barcode too large.

-5 Data will not fit in 90 rows. Must reduce input data or use more
columns.

-6 Must have more than two columns.

-7 Message length plus Error Code Length too big. Use larger row or
column size.

Or set rows = 999 for unlimited row size

-8 Incorrect rotate

-9 Size of barcode too large

-10 Size of barcode too large

QR barcode errors Description

-1 Size must be between 63 and 384, inclusive.

-2 Failed to encode barcode text.

-3 Error Correction level should be from 0 to 4.

-4 Encode mode should be from 0 to 4.

-5 Data will not fit in 90 rows. Must reduce input data or use more
columns.

-6 Must have more than two columns.

-7 Message length plus Error Code Length too big. Use larger row or
column size.

Or set rows = 999 for unlimited row size

-8 Incorrect rotate

-9 Size of barcode too large

-10 Failed to encode barcode text

-11 QR Decoder DLL not present

Bitmap errors Description

-1 BMP Bad drivers

BAXI.Net Programmers Guide

Page 68

-2 Given BMP is too big.

-3 BMP wrong video : bad bmp format

-4 BMP compression failure : bad bmp format

-5 No volume found

-6 No file found

-7 Not enough memory

-8 Read error

-9 BMP not available

For example:

BAXI.Net Programmers Guide

Page 69

{"printmsg":{"ver":"1.0","rows":[{"type":"bmp","data":"Qk0+BwAAAAAAAD4AA
AAoAAAAzwAAAEAAAAABAAEAAAAAAAAHAADEDgAAxA4AAAAAAAAAAAAAAAAAAP///wD//////
////////////////////////////gAA//////////////////////////////////4AAP///
//////////////////////////////+AAD////A/////////////////////////////gAA/
//wAAf///////////////////////////4AAP//wAAA///////////////////////////+A
AD//wAAAD///////////////////////////gAA//wAAAAP/////////////////////////
/4AAP/4AAAAB//////////////////////////+AAD/4AAAAAP//////////////////////
////gAA/8AAAAAA//////////////////////////4AAP+AAAAAAH///////////////////
//////+AAD/AAAAAAB////AP//Af///gAD//AAH8AA//gAA/gAAAAAAP///wB//gD//wAAA/
+AAA/AAAP4AAP4AAAAAAB///8Af/4A//gAAAP/AAAPwAAA+AAD8AAAAAAAP///AH/+AP/wAA
AD/gAAD8AAADgAA/AAAAAAAB///wB//gD/4AAAA/4AAA/AAAA4AAPgAAAAABwf//8Af/4A/8
AAAAP8AAAPwAAAGAADwAAAAAP/z///AH/+AP+AAAAD/AAAD8AAABgAA8AAAAAP9////wB//g
D/gAAAA/wAAA/AAAAIAAOAAAAAHAA///8Af/4A/wAf///4AP/////ACAADgAAAAHgAH///AH
/+AP8AP///+AH/////4AgAA4AAAADgAAf//wB//gD/AH////gD//////AIAAMAAAABwAAH//
8Af/4A/wB////4A//////wCAADAAAAA4AAA///AH/+AP4A////+AP/////8AgAA4AAAAcAAA
f//wB//gD+AP////gD/////+AIAAOAAAAOAAAH//8Af/4A/gD////4A//////gCAADwAAADA
AAB///AH/+AP4A////+AP/////wAgAA8AAABgHwA///wB//gD+AP////gD/////4AIAAPgAA
A8P/wf//8Af/4A/gD////4A/////wACAAD4AAAf/g/P///AH/+AP4A+AAD+AP////AAAgAA/
AAAP/AB////wB//gD+APgAA/gD///+AAAYAAP4AAH/AAH///8Af/4A/gD4AAP4A///+AAAOA
AD/AAH/gAAf///AH/+AP4A+AAD+AP///AAAHgAA/+AH/wAAD///wB//gD+APgAA/gD///gAA
H4AAPj+P/wAAA///8Af/4A/gD4AAP4A///4AAP+AADwP/w8AAAH///AH/+AP4A//gD+AP//8
AA//gAA8APAOAAAA///wB//gD+AP/8A/gD///AB//4AAOAAAHAAAAP//8Af/4A/gD//AP4A/
//wB//+AADgAADgAAAD///AH/+AP4A//wD+AP//8Af//gAAwAAAwAAAAf//wB//gD+AP/8A/
gD///AH//4AAMAAAYAAAAH//8Af/4A/wD/+AP4A///wB//+AADAAAMAAAAB///AH/+AP8Af/
gD+AP//8Af//gAA4AAOAAAAAf//wB//gD/AD/4A/gD///AH//4AAPAAHAAAAAP//8Af/wA/w
Af8Af4A///wB//+AAD8APgAAAAD///AHvwAP+AA4AH+AHf38AD/7gAA///gAAAAA///wAAAA
H/gAAAD/gAAB/AAAA4AAPP/gAAAAAf//8AAAAB/8AAAA/4AAAf4AAAOAAD4AAAAAAAH///AA
AAAf/gAAAf+AAAH+AAADgAA+AAAAAAAD///wAAAAP/8AAAP/gAAB/wAAA4AAPwAAAAAAB///
8AAAAD//gAAH/4AAAf+AAAOAAD+AAAAAAAf///AAAAD//+AAH/+AAAH/4AADgAA/gAAAAAAP
///wAAAD///+Af//gD////4AA4AAP8AAAAAAH////////////////4A///////+AAD/gAAAA
AD////////////////+AP///////gAA/8AAAAAB/////////////////gD///////4AAP/gA
AAAA/////////////////4A///////+AAD/+AAAAAf////////////////+AP///////gAA/
/wAAAAf/////////////////gD///////4AAP//AAAAf/////////////////4A///////+A
AD//8AAAf/////////////////+AP///////gAA///4AAf//////////////////gD//////
/4AAP////P////////////////////w///////+AAD//////////////////////////////
////gAA","x":100},{"type":"txt","data":"NETS BRANCH
NORWAY","align":"center"},{"type":"txt","data":"Haavard Martinsensvei
54","align":"center"},{"type":"txt","data":"TLF:22 21 60
47","align":"center"},{"type":"txt","blank":1},{"type":"txt","data":"NET
S BRANCH NORWAY","align":"center"},{"type":"txt","data":"05.08.15
16:45
KASSE:001","font":"small"},{"type":"txt","data":"ReceiptNo:123456789","f
ont":"small"},{"type":"txt","data":"-"},{"type":"txt","data":"Item
No.1
 5000,00","font":"small"},{"type":"txt","data":"Item
No.2
999,00","font":"small"},{"type":"txt","data":"-"},{"type":"txt","data":"
Total 5999,00"},{"type":"txt","data":"
------"},{"type":"txt","blank":2},{"type":"txt","data":"Thanks for the
visit!!","align":"center"},{"type":"bcode","data":"123456789","symbol":"
code25","align":"center"},{"type":"txt","blank":14}]}}

 Receipt output:

BAXI.Net Programmers Guide

Page 70

The response code from the terminal. Always "00" per today.

	BAXI.Net Programmers Guide

